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Abstract
This paper considers the dynamics of cylindrically arranged parallel layers of smectic A liquid
crystal subjected to Couette flow. Governing equations are constructed using a recently
developed dynamic theory for smectic A (Stewart 2007 Contin. Mech. Thermodyn. 18 343–60).
These equations are solved to provide analytical solutions for the smectic layer undulations and
velocity profiles. Results show the dependence of the response time of the smectic layers upon
the permeation constant and the layer compression modulus. The relaxation times for the flow
profiles are shown to depend upon two viscosities; estimates for these times are shown to be
shorter than that for a typical approximation to the relaxation time of the smectic layer
undulations.

1. Introduction

Liquid crystals are anisotropic fluids made up of elongated
molecules which have an average molecular axis that aligns
along a common direction in space which is usually denoted
by the unit vector n, called the director. Smectic liquid crystals
are layered structures with a well-defined interlayer distance.
These layers may be described by a scalar function �, whereby
the layer normal is given by a = ∇�/|∇�|. There are many
different types of smectic liquid crystal although this paper
shall deal only with smectic A (SmA). In most equilibrium
situations, SmA liquid crystals form locally equidistant parallel
layers in which the director n is parallel to the local unit layer
normal a [2, 3]. However, in some equilibrium and non-
equilibrium circumstances, it is believed that the director n and
the layer normal a may decouple [1, 4–11].

As noted in [1], there are two ideas of compressibility
in smectic liquid crystals: the first is the usual idea of
compressibility in fluids and the second is the compressibility
of the smectic layers themselves. We shall be dealing with an
isothermal, incompressible fluid that possesses compressible
smectic layers.

This paper considers the dynamics of a sample of SmA
liquid crystal occupying the annular region R1 � r � R2

between two concentric cylinders in relative rotation and axial
movement. The inner and outer cylinders have fixed radii
R1 and R2 with corresponding azimuthal angular velocities
V1 and V2, respectively, and corresponding axial velocities
W1 and W2, respectively, as shown in figure 1. The usual
cylindrical coordinate system (r, θ, z) having basis vectors er ,

Figure 1. The geometrical set-up for cylindrical Couette flow. The
SmA liquid crystal occupies the annular region between two
concentric cylinders of radii R1 and R2 which have corresponding
azimuthal angular velocities V1 and V2, respectively. The inner and
outer cylinder cylinders are also allowed to move in the axial
direction with velocities W1 and W2, as indicated. The usual
cylindrical polar coordinates (r, θ, z) are used, with the z-axis
coincident with the common axis of the cylinders. The velocity v is
primarily assumed to have components v2 and v3 in the eθ and ez

directions, respectively, as shown. The director makes an angle
�(r, t) with respect to the local coordinate axes er and eθ , as shown.
The smectic layers are denoted by the dashed lines.

eθ and ez will be used, with the z-axis coinciding with the
common axis of the cylinders, i.e. perpendicular to the page.
To highlight the main phenomena, we shall reduce the viscous
stress tensor to include only the three main viscous coefficients
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for incompressible SmA, namely α4, τ1 and τ2 [1, 2]. External
body forces will be neglected. Analogies will be drawn with
the anisotropic fluid and nematic cases outlined by Stewart [3]
and first published by Atkin and Leslie [12]. However,
we expect to see other phenomena associated with the layer
structure and layer permeation which are features unique to
smectic liquid crystals. The concept of permeation in a liquid
crystal itself is unique as the smectic liquid crystal molecules
provide the membrane (layers) through which the molecules
themselves pass. In the model considered, we shall not impose
the condition a ≡ n throughout the sample. Instead, we allow
the director to rotate, making it possible for the director to
make an angle with the radial coordinate direction. In doing
so, we are allowing a possible director alignment change to
relax the system as the inner and outer cylinders rotate.

In section 2 we employ the dynamic theory for SmA
liquid crystals of Stewart [1] to construct (to second order)
the relevant governing equations for the system examined. In
section 3 the governing equations are solved exactly for a
velocity ansatz which includes azimuthal and axial flow to
provide forms for the smectic tilt angle, layer displacement
function and velocity. Comments are made on the significance
of the form of the Lagrange multiplier and the calculation of the
pressure. Final conclusions and considerations on future work
are given in section 4. Appendix provides a brief summary of
the relevant parts of the dynamic theory used to construct the
appropriate governing equations.

2. Set-up of the dynamic equations

The dynamic theory for SmA liquid crystals presented by
Stewart [1] allows the possibility of the layer normal a and
the director n not necessarily coinciding in some equilibrium
and non-equilibrium situations. As the layer structure could be
under considerable stress in this situation, due to the applied
boundary conditions at the inner and outer radii, the theory
in [1] will be used to model the dynamics of this Couette flow.
In order to proceed we must assume forms for the director, the
smectic layer function, and the velocity. From figure 1, the
director n can be expressed as

n = er cos �(r, t) + eθ sin �(r, t) (2.1)

where �(r, t) is a possible (but not necessary) angle between
the director and the radial vector. Note that this is still in the
SmA phase and we assume � = 0 in equilibrium. However,
we allow for the possibility of � �= 0 in non-equilibrium
situations. Solutions to the resulting governing equations
will be sought in which the velocity, expressed in cylindrical
coordinates, is of the form

v = eθrv2(r, t) + ezv3(r, t) (2.2)

where v2(r, t) and v3(r, t) are undetermined functions
describing the flow in the azimuthal and axial directions,
respectively.

We assume here that there is strong homeotropic
anchoring of the director on the boundaries, i.e. SmA at

the boundaries with the layer normal in the radial direction.
Therefore we have the constraints

�(R1, t) = �(R2, t) = 0. (2.3)

We describe the layers via the linear function

�(r, t) = r − u(r, t), (2.4)

where u(r, t) is the assumed layer displacement away from
the equilibrium state. This form for the layer function has
been used elsewhere [13–15], although it is possible to use a
nonlinear form of the smectic layer function [8, 10, 11]. In
this case, we note that in setting � ≡ r for the equilibrium
state results in a ≡ (1, 0, 0), which we would expect from
physical considerations. On displacing the layers we would
expect some change in the unit layer normal, especially if
the layer displacement is a function of the azimuthal angle θ

or height z. We assume here, for simplicity, that the layer
displacement and tilt angle are only functions of the radius r
and time t . A similar assumption can be seen in the work by
Atkin [16]. From equation (2.4) we compute the layer normal,
to first order, as

a = ∇�

|∇�| = er . (2.5)

We note that the layer displacement term u is absent from
the layer normal a. However, we will see that the rôle of
u is predominant in the permeation equations. This is to be
expected, since the layer direction may remain relatively fixed
where permeative flow of material across smectic layers can
occur; this is one of the signature features of the smectic phase.
We comment that the liquid crystal shall resemble that of
classical SmA at equilibrium, only when the director is aligned
with the radial coordinate direction, that is, when �(r, t) ≡ 0.

The proposed form of the energy density of a smectic A
liquid crystal is given by [1]

wA = 1
2 K n

1 (∇ · n)2 + 1
2 K a

1 (∇ · a)2

+ 1
2 B0 (|∇�| + n · a − 2)2 + 1

2 B1
(
1 − (n · a)2

)
, (2.6)

where K n
1 represents the usual elastic splay deformation of the

director n while K a
1 is a measure of the bending of the smectic

layers; both K n
1 and K a

1 are positive elastic constants. The term
B0 is the layer compression constant and B1 is a measure of
the strength of the coupling between n and a. We note that
de Gennes [17] has considered higher order approximations to
an energy density but excluded the possibility of modelling
large separations of n from the local layer normal. In an
alternative nonlinear theory which allows the separation of n
from the classical description of the layer normal, a higher
order B1 term can be included when a non-unit vector approach
is adopted [18, 19]. We also note that terms up to second order
have been discussed by Nakagawa [20].

The governing equations corresponding to the conserva-
tion of linear momentum, conservation of angular momentum
and a permeation equation may be derived from those in [1];
the relevant equations are summarized in the appendix. These
governing equations can be expressed in physical components
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using standard transformations to cylindrical coordinates [3,
p 325]. To second order, we have

p̃,r − ρ0rv2
2 + 1

r
B0 (cos � − 1) − B0 cos �

(
1

r
u,r + u,rr

)

+ 2B0u,r u,rr + B0 sin ��,r
(
u,r − 1

) + B0

r
u2

,r = 0,

(2.7)
1

r
p̃,θ + ρ0rv2,t − 1

2
r (α4 + τ2) v2,rr − 3

2
(α4 + τ2) v2,r

+ 1

r
B0 sin �

(
u2

,r − u,r − 1
)

+ 1

r
sin � cos � (B0 + B1)

(
1 − u2

,r

) = 0, (2.8)

p̃,z + ρ0v3,t − 1

2r
(α4 + τ2) v3,r − 1

2
(α4 + τ2) v3,rr = 0,

(2.9)

− 1

r 2
K n

1 + B0
(
u,r + 1 − cos �

) + B1 cos � − λ cos � = 0,

(2.10)

λ sin � = 0, (2.11)

u,t − λp B0

r
(1 + ur − cos �)

− λp B0u,rr − λp B0 sin ��,r = 0. (2.12)

Here p̃ = p + wA where p is the pressure, wA is the
energy density, ρ0 is the density and λp is the permeation
coefficient. The function λ is a Lagrange multiplier arising
from the constraint that n is a unit vector.

Equation (2.9) dictates that p̃ = p̃(r, θ, t) due to the
supposed forms for n and v. Moreover, for a single-valued
solution we must have p̃(r, θ, t) = p̃(r, θ+2π, t) (cf [3, p 201]
and [12]), which forces p̃ = p̃(r, t) and therefore

p̃,θ and p̃,z = 0. (2.13)

Equation (2.11) provides us with two possible scenarios: either
λ = 0 or sin � = 0. It can be shown that the λ = 0 case
uncovers contradictions [21] and hence we assume � = 0 to
second order.

3. Exact solutions

We now proceed to solve the five remaining governing
equations (2.7)–(2.10) and (2.12) for the five remaining
unknowns p(r, t), v2(r, t), v3(r, t), u(r, t) and λ. Inserting
� = 0 into the permeation equation (2.12) uncovers a partial
differential equation for the layer displacement in the form

1

λp B0
u,t = 1

r
u,r + u,rr . (3.14)

We assume the layer displacement can be written

u(r, t) = U(r) + ū(r, t), (3.15)

where U(r) is the steady-state solution and ū(r, t) is a time-
dependent perturbation to the system. The steady-state solution
of equation (3.14) is easily solved to give

U(r) = A + B ln r, (3.16)

where A and B are arbitrary constants. Considering the
substitution

t̂ = B0λpt, (3.17)

and allowing the time-dependent perturbation to the layer
displacement to be written in the variables separable form of

ū = Ū(r)e−ω2 t̂ , ω2 > 0, (3.18)

allows us to find the solution [22, p 362]

ū = e−ω2 t̂ (C J0(ωr) + DY0(ωr)) , (3.19)

where C and D are arbitrary constants and J0 and Y0 are the
Bessel functions of the first and second kind of order zero,
respectively [23]. Hence, the full general solution for the layer
displacement function may be written as

u(r, t) = A + B ln r + e−ω2 B0λpt (C J0(ωr) + DY0(ωr)) .

(3.20)
It is clear from the behaviour of the Bessel functions that
layers of large radius have smaller displacements. It is also
clear from this solution that any small perturbation to the layer
displacement decreases as the radius and/or time increases. We
may write the relaxation time (from perturbed state to steady
state) of the system, τr, as

τr = 1

ω2λp B0
. (3.21)

However, the magnitude of the exponent ω is unknown. Unless
boundary conditions can be stated for the layer displacement,
information on ω shall remain unknown. Nevertheless, we
see that the time for the layers to settle to their steady-state
solution is governed by the permeation constant λp and layer
compression modulus B0, as anticipated earlier. Consequently,
we remark that the main feature of smectics, compared with
nematics, is the presence of permeation and its rôle in the
decay process with time to finally settle the layers. The
result in (3.21) is completely analogous to that derived for
the permeation mode by de Gennes and Prost [2, p 420], in
which case τr = 1/q2

z λp B0 where qz is the wavenumber in
the direction of the smectic layer normal a; for finite samples,
the approximation qz ∼ π/d , where d is the sample depth in
the z-direction, is often used [2, pp 362–72]. For a typical
sample depth of d = 10−4 m and the estimate [2, p 420]
λp B0 � 10−9 m2 s−1, this gives rise to the estimate τr ∼ 1 s.
This relaxation time will turn out to be considerably longer
than the estimates derived below for the relaxation times of the
axial and azimuthal velocity disturbances.

The Lagrange multiplier can now be given explicitly as

λ = B1+B0

(B
r

− e−ω2 B0λpt (CωJ1(ωr) + DωY1(ωr))

)
− K n

1

r 2
.

(3.22)
This Lagrange multiplier arises from the constraint |n| = 1.
The magnitude of the Lagrange multiplier is an indication
of how flexible the liquid crystal molecules are. When
the permeation constant λp increases, the work required of
the multiplier increases. This is reasonable physically since

3
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creation or annihilation of layers is related to the rate of
permeation [6], and so the permeation would ultimately affect
the director and, in turn, the Lagrange multiplier. Furthermore,
we can see that increasing the magnitude of B1, thereby
allowing the layers more opportunity to distort, forces the
Lagrange multiplier to increase. This is also physically
reasonable since we expect the Lagrange multiplier to have
to do more work to keep the system intact if there is more
flexibility between the layers and the director. We note that
increasing the magnitude of the elastic constant term would
decrease the magnitude of the Lagrange multiplier, and hence
the work required to keep the constraint |n| = 1 intact. Again,
this is physically realistic since a more elastic system would
be able to orient more easily to accommodate the |n| = 1
condition. Finally, we consider the effect of the radius on
the Lagrange multiplier. Consider the case where r → 0,
i.e. when we consider the central region of the liquid crystal
sample, it is clear from the behaviour of the Bessel functions
(Y1(r) → −∞ as r → 0) that this would cause λ → ∞. This
alerts us to the fact that the dynamic equations are breaking
down. One interpretation of this is that the liquid crystal is
isotropic near the centre of the sample, or has a disclination
core.

We now proceed to solve the remaining equations for
v2(r, t), v3(r, t) and p̃(r, t). In accord with the results in (2.13),
we set p̃,z = 0. Thus equation (2.9) becomes

2ρ0

α4 + τ2
v3,t = 1

r
v3,r + v3,rr . (3.23)

Similar to the method employed for the layer displacement
function, we assume the axial velocity v3 takes the form

v3(r, t) = V (r) + v̄3(r, t), (3.24)

where V (r) is the steady-state solution and v̄3(r, t) is a time-
dependent perturbation to the system. Concentrating, for
the moment, on the time-dependent solution and making the
change of variable

t̂ = α4 + τ2

2ρ0
t, (3.25)

allows us to consider equation (3.23) in the form

−v̄3,t̂ + 1

r
v̄3,r + v̄3,rr = 0. (3.26)

Considering a similar form of the velocity to that of the layer
undulations

v̄3 = V 3(r)e−ν2 t̂ , ν2 > 0, (3.27)

allows us to solve (3.26) in terms of V3 to find that [22, pp 361–
362]

V 3(r) = C J0(νr) + DY0(νr), (3.28)

where C and D are arbitrary constants. For small perturbations
and assuming non-slip conditions on the boundaries, we
require

V 3(R1) = V 3(R2) = 0. (3.29)

Consequently, the two equations which arise from the
solution (3.28) and the boundary condition (3.29) can be
written in the form

[
J0(νR1) Y0(νR1)

J0(νR2) Y0(νR2)

] [ C
D

]
=

[
0
0

]
. (3.30)

For non-zero solutions in C and D we require the determinant
of the above 2 × 2 matrix to be identically zero, that is,

J0(νR1)Y0(νR2) − Y0(νR1)J0(νR2) = 0. (3.31)

Let ν1 be the first positive value of ν that satisfies
equation (3.31). Then we can write the solution (3.28) as

V 3(r) = C
Y0(ν1 R1)

(J0(ν1r)Y0(ν1 R1) − J0(ν1 R1)Y0(ν1r)) .

(3.32)
Since C is arbitrary, and small because of the linearization
process, we can write this solution as

V 3(r) = E (J0(ν1r)Y0(ν1 R1) − J0(ν1 R1)Y0(ν1r)) , (3.33)

where E = C/Y0(ν1 R1) is small.
The solution of the steady-state problem, with non-slip

conditions on the stationary cylinders, is V3 = 0. However,
if we consider cylinders which not only rotate but also move
in the axial direction, then we introduce the standard (steady-
state) solution which can be found throughout the literature,
namely,

V (r) = F + G ln r, (3.34)

where F and G are arbitrary constants which can be calculated
if the velocities of the moving cylinders are known. Assuming
the boundary conditions

V (R1) = V1, V (R2) = V2, (3.35)

implies that

V (r) = V1 + (V2 − V1)
ln

(
r
R1

)

ln
( R2

R1

) . (3.36)

Hence, the full solution is given by

v3(r, t) = V1 + (V2 − V1)
ln

(
r
R1

)

ln
( R2

R1

) + E(J0(ν1r)Y0(ν1 R1)

− J0(ν1 R1)Y0(ν1r))e−ν2
1 t̄ . (3.37)

Here, E is the amplitude of the initial perturbation. The
response time is given via the factor e−ν2

1 t̂ , and so, recalling
the scaling (3.25), the response time τr is given by

τr = 2ρ0

(α4 + α2)ν
2
1

. (3.38)

Using the suggested material parameters [3]

α4 + τ2 = 0.05 Pa s, ρ0 = 1000 kg m−3, (3.39)

and the experimental parameters reported by Meiboom [24]

R1 = 9 × 10−3 m, R2 = 11 × 10−3 m,

V1 = 10−4 m s−1, V2 = 3 × 10−4 m s−1,
(3.40)
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Figure 2. The analytical solution of equation (3.23) for the axial
velocity v3(r, t), given by (3.37), for the material parameters (3.39)
and (3.40). For comparison purposes, the arbitrary amplitude E of the
initial perturbation has been set to 10−2.

allows us to calculate the magnitude of the exponent ν1 ≈
1569.9972 from the relation (3.31). Consequently, the
magnitude of the response time is τr ≈ 0.016 23 s. This
relaxation time is considerably shorter than the estimate
derived above for the relaxation time of the smectic layer
undulations u, which was of the order of seconds. The resulting
axial velocity v3 given by (3.37) for the parameters (3.40)
is plotted in figure 2 where the arbitrary amplitude E of the
perturbation has been set to 10−2 for demonstration purposes in
order that the perturbation is initially comparable in magnitude
to the steady state. We remark here that the response
time (3.38) is analogous to that for a Newtonian fluid with
constant viscosity η when a shear between parallel plates
a distance h apart is applied [25, p 493]: it is given by
τr = ρ0/ησ 2

1 where σ1h = π is the first zero of the first
eigenfunction.

The solution for the azimuthal velocity may be found in
a similar manner. First, we consider equation (2.8), recalling
� ≡ 0,

1

r
p̃,θ + ρ0rv2,t − 1

2
r (α4 + τ2) v2,rr − 3

2
(α4 + τ2) v2,r = 0.

(3.41)
Given that p̃,θ = 0 (by (2.13)), equation (3.41) may be written
as

2ρ0

α4 + τ2
v2,t = 3

r
v2,r + v2,rr . (3.42)

We consider the azimuthal velocity to have a steady-state
component and a time-dependent perturbation, similar to the
axial velocity, i.e.,

v2(r, t) = W (r) + v̄2(r, t). (3.43)

Implementing the same scaling in time described in (3.25) and
assuming the time-dependent part of the solution takes the
form

v̄2(r, t) = W (r)e−μ2 t̂ , μ2 > 0, (3.44)

allows us to determine the explicit solution [22, pp 361–362]

W (r) = H
r

J1(μr) + I
r

Y1(μr), (3.45)

where H and I are arbitrary constants. For non-slip on the
boundaries we require the perturbation to vanish there for all
times. We therefore require

[
J1(μR1)

R1

Y1(μR1)

R1
J1(μR2)

R2

Y1(μR2)

R2

][ H
I

]
=

[
0
0

]
. (3.46)

Similar to the previous case for v3 above, for non-zero
solutions in the constants H and I we require

J1(μR1)Y1(μR2) − Y1(μR1)J1(μR1) = 0. (3.47)

Setting μ1 as the least positive value of μ that satisfies (3.47),
and recalling the scaling in time (3.25), allows us to derive the
solution as

v̄2(r, t) = J
r

(J1(μr)Y1(μ1 R1) − Y1(μr)J1(μ1 R1))

× e− (α4+τ2)μ2
1

2ρ0
t
, (3.48)

where J = H/Y1(μ1 R1) has been set as the arbitrary initial
magnitude of the perturbation. Similar to the previous case, the
relaxation rate here is given by

τr = 2ρ0

(α4 + α2)μ
2
1

. (3.49)

The steady-state solution for the azimuthal velocity is
given by

W (r) = K + L
r 2

. (3.50)

Applying the non-slip conditions

W (R1) = W1, W (R2) = W2, (3.51)

allows us to obtain the solution for W (r) as

W (r) = R2
1 W1 − R2

2 W2

R2
1 − R2

2

+ 1

r 2

(W2 − W1)R2
1 R2

2

R2
1 − R2

2

. (3.52)

Hence, the full general solution of equation (3.43) for the axial
velocity v2 is given by

v2(r, t) = R2
1 W1 − R2

2 W2

R2
1 − R2

2

+ 1

r 2

(W2 − W1)R2
1 R2

2

R2
1 − R2

2

+ I
r

(J1(μr)Y1(μ1 R1) − Y1(μr)J1(μ1 R1))e
− (α4+τ2)μ2

1
2ρ0

t
.

(3.53)

The relaxation time of the azimuthal velocity can be calculated
once the magnitude of μ1 is known. Using the experimental
data quoted in (3.40) (and setting W1 = V1, W2 = V2) allows
us to numerically calculate μ1 ≈ 1573.191 s. Consequently,
using the parameter values detailed in (3.39) allows us to find a
relaxation time of τr ≈ 0.016 16 s. We note that although this
is a slightly longer time than that for the axial velocity, it is also
considerably shorter than the estimate for the relaxation time of

5
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Figure 3. The analytical solution of equation (3.42) for the azimuthal
velocity v2(r, t), given by (3.53), for the material parameters (3.39)
and (3.40) with W1 = V1 and W2 = V2. For plotting purposes, the
arbitrary amplitude I of the initial perturbation has been set to 10−4.

the smectic layer undulations, as was noted in the case for the
axial velocity. The azimuthal velocity is plotted in figure 3.
Here, the arbitrary constant has been set as I = 10−4 for
comparison with the steady state.

The pressure p can be determined exactly via the function
p̃(r, t) by a direct integration of equation (2.7) using the
solutions obtained for the layer undulation function and the two
velocity functions. However, due to the complicated nature of
the integrals involved, and because it is not needed to determine
the results derived above, we do not compute the pressure here.

4. Conclusions and further work

The complete solution to the Couette flow problem described
in section 1 is given by the smectic tilt angle �, the layer
displacement u, the axial velocity component v3 and the
azimuthal velocity component v2; these results are given by
� = 0 and equations (3.20), (3.37) and (3.53), respectively.
Plots of the axial and azimuthal velocities are presented
in figures 2 and 3, respectively. The Lagrange multiplier
λ is given by equation (3.22) and the pressure can be
calculated via the linear momentum equation (2.7) and the
solutions (3.20), (3.37) and (3.53).

As previously mentioned, the dynamic theory of SmA
liquid crystals proposed by Stewart [1] was employed in this
work to compute the governing equations of the Couette
system. This theory was used as it allowed for the director
and layer normal to be non-equivalent. However, in the case
studied we find that for a non-zero Lagrange multiplier, we
are forced into the constraint a ≡ n. This result is of
physical significance; it shows that the liquid crystal will not
accommodate a possible misalignment of the director away
from the direction of the SmA layer normal in order to reduce
the stress on the layers cause by the rotations of the boundary
cylinders. Thus, to the linear order of approximation used

above, other phenomena, such as permeation, are driving the
relaxation. As a ≡ n, it might be expected that the full
dynamic theory for SmA is no longer necessary: however,
the permeation equation plays an important rôle in providing a
mechanism that influences the relaxation of the smectic layers,
through the permeation constant λp. Whether the condition
a ≡ n persists to higher orders of approximation is presently
unknown, but it would appear highly unlikely that a ≡ n for
the fully nonlinear dynamic equations for Couette flow, given
that a �≡ n for nonlinear static problems [8, 9, 11].

Once it was discovered that the director and layer normal
were coincident, the layer displacement function and Lagrange
multiplier were computed. The layer displacement function
was found to be stable in time with a relaxation time τr =
1/(ω2λp B0) for some relaxation parameter ω. As indicated
above, this relaxation parameter may be estimated through
the approximation ω ∼ π/d , where d is a typical sample
depth, whenever an estimate for λp B0 is available. The
Lagrange multiplier evaluated at equation (3.22) also provides
information about the system. As the Lagrange multiplier
is a measure of the work required to keep the |n| = 1
constraint intact, we see that as the permeation constant λp,
layer compression constant B0 or the coupling strength B1

increase, then the work required by the multiplier increases.
Also, if the elastic contribution K1 is increased, the magnitude
of the Lagrange multiplier decreases. All of these situations
are expected physically. The concept of permeation has an
important rôle in the dynamics of smectic liquid crystals and
has been considered previously [1, 2, 26] and this work further
emphasizes its influence.

Neglecting a time-dependence in the velocity profile
allows us to arrive at results identical to those originally
published by Leslie [27] for anisotropic fluids. Once a time-
dependence in the velocity is considered, we can solve the
linear momentum equations exactly to find a form for the
velocity in both the azimuthal and axial directions. These
solutions are dependent on two parameters ν and μ which must
satisfy the relations (3.31) and (3.47), respectively. The least
values of these parameters that satisfy these relations can be
calculated numerically, given that the radii of the cylinders
are known. These values lead to estimates for the relaxation
times for the axial and azimuthal relaxation times given by,
respectively, equations (3.38) and (3.49). For typical material
parameters, both these relaxation times were considerable
shorter than a basic estimate for the relaxation time of the
smectic layer undulations given by (3.21). It would appear
that small fluctuations to the flow will dissipate more rapidly
than fluctuations to the smectic layer structure. It is hoped
that these results will encourage more refined measurements
for the magnitude of the combined constant λp B0, via (3.21),
and the viscosity coefficient α4 + τ2, via the relaxation rates τr

in (3.38) and (3.49). Since α4 = 2η, where η is the well-known
standard isotropic Newtonian viscosity, this result could lead
to revised approximations for the magnitude of the viscosity
coefficient τ2 if α4 is estimated from the literature for nematic
liquid crystals. This would provide novel information on SmA
viscosities.
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Appendix

The appropriate parts of the SmA dynamic theory formulated
in [1] will now be summarized. Cartesian tensor notation and
the summation convention will be used, where any index that
is repeated precisely twice in an expression is summed from 1
to 3. Partial differentiation with respect to the variable x j is
denotes by a subscript j preceded by a comma. For example,
ai, j denotes the partial derivative of the i th component of a
with respect to the j th spatial coordinate and ai,i represents the
divergence of a. The layer normal a is given by

ai = �,i

|∇�| , ai ai = 1, (A.1)

where the smectic layers are modelled by the layer function
�. The usual Oseen [28] constraint, ∇ × a = 0 will not be
imposed for the dynamics: small distortions to the lamellar-
like layer structure of SmA generally violate this constraint.
The director must satisfy the constraint

ni ni = 1. (A.2)

The incompressibility condition is given by

vi,i = 0, (A.3)

where v is the velocity. The rate of strain tensor A and vorticity
tensor W are second order tensors defined in the usual way by

Ai j = 1
2 (vi, j + v j,i), Wi j = 1

2 (vi, j − v j,i), (A.4)

and, following the standard procedure for nematics, the co-
rotational time flux N of the director n is introduced as

N = ṅ − Wn. (A.5)

The equations that arise from the balance law for linear
momentum in the absence of any external forces are

ρv̇i = − p̃,i + g̃ j n j,i + |∇�|ai J j, j + t̃i j, j , (A.6)

where ρ is the density, p̃ = p + wA where p is the pressure
and wA is the energy density, and J is defined by

Ji = − ∂wA

∂ �,i
+ 1

|∇�|

[(
∂wA

∂ap,k

)

,k

− ∂wA

∂ap

]

(δpi − apai).

(A.7)
A superposed dot represents the usual material time derivative
and we remark that J is sometimes called a ‘phase flux’ term.
It is a natural nonlinear extension to the versions discussed by
Auernhammer et al [4, 5], E [26] and de Gennes and Prost [2].
When only α4, τ1 and τ2 are considered as the key viscosity
coefficients then the constitutive equations for the viscous
stress t̃i j and dynamic contribution g̃i in an incompressible
SmA liquid crystal are given by, respectively,

t̃i j = α1(nk Akpnp)ni n j + τ1(ak Akpap)ai a j

+ τ2(ai A jpap + a j Aipap), g̃i = 0.
(A.8)

The viscosities α4, τ1 and τ2 are analogous to the usual
incompressible SmA viscosities [26, equation (3.33)]. Under
these circumstances, the balance of angular momentum in the
absence of any external forces, leads to the equations

(
∂wA

∂ni, j

)

, j

− ∂wA

∂ni
= λni , (A.9)

where the scalar function λ is a Lagrange multiplier that arises
from the constraint (A.2) and can usually be identified from
by taking the scalar product of (A.9) with n. The permeation
equation is

�̇ = −λp Ji,i , (A.10)

where λp � 0 is the permeation coefficient which is
related the layer flux through a stationary medium [2].
Equations (A.2), (A.3), (A.6), (A.9) and (A.10) provide nine
equations in the nine unknowns �, ni , vi , p and λ; the smectic
layer normal a is determined by (A.1) from the solution for �.
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